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• RAPIDITY (Dynamic Response)

So far the measurand (the physical quantity for which we wish to measure the intensity) has been considered 
strictly CONSTANT during the whole measurement procedure ! 
From here on it will chance its intensity with time during the measurement … the measurand becomes a 
function of time ! 

i(t) Instrument u(t)  
both the input measurand and the output measurement 
are functions of time   →   i(t)   u(t)

We may call rapidity of an instrument “the attitude to correctly follow the changes of the measurand during time”

Rapidity of mechanical instruments is always limited by the inertia and the damping effects of its moving parts ! 
Rapidity for electronic instruments is always limited by the combination of its capacitive and inductive reactances !

An instrument with insufficient rapidity (insufficient dynamic response) during a measurement will output a 
measurement waveform which will be attenuated and out of phase (delayed) with respect to the measurand !
The output measurement waveform will be distorted with respect to the input measurand waveform …



We have basically two schemes or methods to 
study the dynamic response of a measurement 
instrument:

1. STEP RESPONSE with which we can get 
some important parameters such the 
settling time and the time constant

2. FREQUENCY RESPONSE with which we can 
get other important parameters such the 
cut-off frequency and the damping factor …

There is also a third scheme, which is used less 
often: the ramp response that  leads to the 
delay time …



At time t0 the input signal changes 
instantaneously its value from i0 to i1

The instrument output will try to follow this 
change, form u0 to u1 , the best he can …

However, it will take some time ts = t1 – t0

to reach the correct final value within a 
certain error ±εd !  

±εd is the dynamic error, which has to be established in advance by the operator …

ts = t1 – t0   is the settling time of the instrument, which provides a first idea of its dynamic response

tSLEW = tsr – t0 is the slew rate, which is the time the instrument takes to reach the first overshoot peak …

… not all the instruments show an overshoot during the step response ! 

Step Response



In the more general case, an input variable (measurand) changes “periodically” during time, then we can refer to 
simple sinusoidal inputs because every periodic signal can be decomposed by the Fourier Series: 
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ideal frequency response
and phase response curves …

• constant output/input ratio for 
“every frequency” of the input !

• zero phase delay for “every 
frequency” of the input !

Frequency Response



Real instrument frequency response example:

Real instruments always  attenuate the output 
amplitude for higher frequencies  (f → ꝏ) 
because:

• mechanical instrument have inner moving 
parts with inertia which can not have 
“infinite acceleration”  

• electronic instrument have inner 
components which can not have 
inductive reactance XL = jωL = ꝏ
capacitive reactance XC = 1/jωC = 0

The extension of an instrument frequency response depends also from the dynamic error the operator accepts:
• if we accept a dynamic error  εd = 3%  we have a cut-off frequency f2

• If we accept a dynamic error  εd = 25%  we have a much higher cut-off frequency f1 > f2

All frequencies between  f0 and f1 (or f2) form the instrument bandwidth or pass-band !



There are many instruments where the bandwidth does “not 
start” from frequency f0 = 0 Hz, but starts at a higher value  f1

In these cases, we have “two cut-off frequencies” and the 
pass-band is between these two frequencies: tits ffB 

Most of the times the dynamic error (which can be “fairly large”) is expressed in a logarithmic scale, inherited 
from “acustics” studies and the logarithmic unit is the decibel :

It is world wide accepted that a tolerable dynamic error limit is  which means the 
instrument output A is “attenuating the input” to the  70,7 %  of its real amplitude or that it is doing a 
dynamic error of  29,3 %   !!
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We say an instrument is dynamically linear if we can write its 
“dynamic characteristic equation” as follows : )(
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The instrument dynamic can be described by an ordinary differential equation with constant coefficients !
The solution can be written as:

)()()( txtxtx rgtr 

Solution of the associated homogeneous equation
which represents:  xtr(t)
the transient dynamic response of the instrument

Solution of a particular integral of the equation 
which represents:  xrg(t)
the dynamic steady state of the instrument

y(t) Instrument x(t)  

We change now notation for the input and output variables:

y(t) →   input variable (measurand)

x(t)   → output variable (instrument response or 

indicator deflection)



To study the TWO different situations we will employ the TWO different experimental schemes or tools 
introduced before:
1. For the dying out transient →  the STEP RESPONSE  xtr(t)
2. For the established steady state →  the FREQUENCY RESPONSE  xrg(t)



Zero-order instruments

When the differential equation of the dynamic characteristic has the simplest form, without the derivative terms: 

ybxa  y
a

b
x →

The output signal (or deflection) is “always” proportional to the input signal !
There is no delay between output and input therefore, zero-order instruments 
“respond instantaneously” and can be considered ideal instrument !

For the potentiometer we have for the left circuit  E = RI  while
the displacement  y  is indicated  by the output voltage  e(t)  which is:  

where  and the variable “time” is only 

present as “independent variable” for the position  y = y(t)

Note that is also the graduation curve (static characteristic

curve) of the potentiometer and is the static sensitivity !  
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First-order instruments

A first-order instrument can “store energy” in only one of its inner elements !

If we displace the indicator S of the simple mechanical system to a 
position x0 ≠ 0 , elastic (potential) energy is stored in the spring k. 

If at t = 0 we leave the indicator S free of moving, the elastic energy 
stored in the spring will pull back the indicator to the rest position 
x = 0 . During movement, the damper c will oppose the motion.

For every time instant t the equation of force equilibrium is: orxckx  0 kxxc

For every time instant t the velocity is: therefore the coefficient is a time !   x
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is the time constant of the first-order instrument of above ! 



The solution of the 1st order differential equation is the well known “decreasing exponential”: 

the curve of which can be drawn with the initial condition:   t = 0   →   
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Observe in the figure the geometrical meaning of the time constant

At the time  t = λ we have that the 
indicator S has travelled for 63% of the displacement and has 
still a 37% to go to reach its final position x = 0 !! 
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… but these are only introductory 
definitions and considerations …



In the general case of the step response for the instrument of before, an input variable is present : 
a step force F0 applied to the indicator S at time t = 0 …
The 1st order differential equation that describes the indicator deflection therefore is: and the 
general solution has the form  

• xrg is a particular solution and describes the “steady state condition” of the instrument:
Note that when t → ꝏ the indicator speed must be zero therefore the steady state of the 
indicator S will be described by the position  

• xtr instead, is the solution of the associated homogeneous equation and describes the “dying out transient”:

The final solution will be the “sum” of the two contributions:
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When we are interests in studying the steady state dynamic response of a 1st order instrument we have to employ 
the other tool, the frequency response. To do so, we have to apply at the instrument input a periodic measurand: 

a periodic force of frequency  ω = 2πf  !tsenFtF 0)( 

The differential equation which describes the indicator S movements 
will be:
The general solution will always be but we will be 
interested only in the steady state part, which we can assume to be: 

How does the “amplitude” of the output indication x(t) change with 
frequency ?  And what “delay” will the output x(t) show ?
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To respond to those questions we will 
employ the phasor notation:

input: 
output:
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To verify the xrg solution we have to substitute our assumed “steady state solution” in the differential equation …
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   arctg which is the phase delay of the instrument !



1st order instrument frequency response 1st order instrument phase delay

These diagram have on the x axis the non-dimensional variable  “ωλ» and therefore are normalized diagrams
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c is the characteristic frequency of a 1st order instrument for which we have  ωcλ = 1  → 

therefore,  ωc is the cut-off frequency for a  - 3db  attenuation :  
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Example: The “dynamic response” of the mercury thermometer 

For every differential time interval dt that precedes the equilibrium condition we have:

Heat amount the environment “transfers to” the mercury:

Heat the mercury “receives from” the environment: 

Where: m is the total mercury mass
c is the mercury specific heat 
k is the thermal exchange coefficient
A is the thermal exchange surface of the thermometer

The two heat amounts of above must be the same:

is the time constant for this 1st order instrument !

If  λ = 1s  then  ωλ = 1  → and   → quite slow !
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Second-order instruments

A second-order instrument can “store energy” in two of its inner elements !

k →   the elastic spring stores potential energy 
m →   the moving mass stores kinetic energy

The differential equation that describes the “free movement” of the indicator m

0
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 kx
dt

dx
c

dt

xd
m

If we consider the very particular case for which  c = 0 we get the important limit situation described by :

where and  ωn is the natural frequency of the instrument !

A system like this has NO damping and, if pulled from its equilibrium position  x = 0, it will oscillate indefinitely 
with a frequency  ωn and will NEVER stop !
Of course, it’s an IDEAL system …
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In the real case of the  step response for the instrument of before, an input variable is present : 
a step force F0 applied to the indicator m at time t = 0 …
The 2nd order differential equation that describes the indicator deflection therefore is: and 
the general solution has again the form  

• xrg is a particular solution and describes the “steady state condition” of the instrument:
Note that when t → ꝏ the indicator speed and acceleration must be zero therefore the 
steady state of the indicator S will be described by the position  

• xtr instead, is the solution of the associated homogeneous equation and describes the “dying out transient”:

with and the discriminant !

Depending on the sign of the discriminant  Δ > 0, Δ = 0, Δ < 0  we will have “different behaviors” of the 
instrument.  Therefore, the 2nd order instrument will exhibit “more than one type” of step response !
The curves of the step response will depend on a parameter obtained from the discriminant Δ :

the damping factor where 
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• For ξ > 1 (which is the same of  c > ccr ) 
the instrument is over-damped and it will 
reach the final indication with a slow 
exponential path !

• For  ξ = 1 (which is  c = ccr ) the 
instrument has a critical damping and 
reaches the final indication with the 
fastest exponential path !

• For  ξ < 1 (which is  c < ccr ) the 
instrument is under-damped, it reacts 
quickly to the step input but exhibits 
several damped over-oscillations before 
reaching the final indication !

Note that for the case  ξ < 1 the frequency of the over-oscillations seems to depend from the value of the 
damping factor ξ …
Instrument designer generally prefer to choose a damping factor  ξ = 0.7÷0.8  so the indicator m will have only 
one over-oscillation and reaches the final indication  F0 /k from the upper side …  



To obtain the values of  ωn and ξ one should know the values of the coefficients m, c, and k of the 2nd order 
instrument which is often almost impossible !
In case the instrument has ξ < 1 (which is the most common) one can employ an experimental procedure that 
leads to the logarithmic decay  δ : 

Displace the instrument indicator from the zero 
position, leave it free to move back and measure 
the decreasing oscillations …

If the decay is small, it can also be measured “after 
k waves”, as showed in the equation above.
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The logarithmic decay δ is dependent from the damping factor ξ :    

And the frequency  ω0 = 2π/T0 of the decreasing oscillation is “smaller” than the natural frequency ωn … 
depending also from the damping factor  δ :
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When we are interests in studying the steady state dynamic response of a 2nd order instrument we have to 
employ the other tool, the frequency response. To do so, we have to apply at the instrument input a periodic 
measurand: a periodic force of frequency  ω = 2πf  !tsenFtF 0)( 

The differential equation which describes the indicator m movements will be:
The general solution will always be but we will be interested only in the steady state part, 
which we can assume to be: 

How does the “amplitude”  X0 of the output indication x(t) change with frequency ?  
And what “phase delay” ϕ will the output x(t) show ?

Same as done for the 1st order instruments we substitute the input and the instrument output 
in the differential equation:

rgtr xxtx )(

)()( 0   tsenXtxrg

tsenFkxxcxm 0 

tjeFtF 
0)( 

 jtj eeXtx 0)( 

tjjtjjtjjtj eFeekXeeXjceeXm   0000

2 )()( 

0

2

0 )( FkjcmeX j  

12

0

2

0
0













k

c
j

k

m
k

F

kjcm

F
eX j

with and   2

n
m

k


n

cr j
k

m
j

k

km
j

k

c
j

k

c
j










 22

2




nnnn

j

j

k

F

j

k

F

eX





















2112
2

2

0

2

2

0

0







 which is the complex frequency response for the 2nd order instrument
Calculating the modulus and the phase lag of this function we obtain … 
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Normalized diagram of the amplification or gain of 
the instrument: 

These curves are also dependent from the damping 
factor ξ

For the amplification is:  

wich for «small values» of ξ can be «dangerous»,
these are the resonance conditions …
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The curves depend on the damping factor ξ , however they all
pass through the point :

which makes it useful to experimentally determine the natural 
frequency ωn without knowing the damping factor ξ … 
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which makes the dynamic response of an instrument always inversely proportional to its static sensitivity !!
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Example:  the galvanometer

Static characteristic (graduation curve)

motor torque: 
resisting torque:
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inversely proportional to ωn
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Dynamic characteristic (dynamic response)

The output indication is a rotation θ therefore : and for t > 0   (step response)

(frequency response)
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