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 RAPIDITY (Dynamic Response)

So far the measurand (the physical quantity for which we wish to measure the intensity) has been considered
strictly CONSTANT during the whole measurement procedure !

From here on it will chance its intensity with time during the measurement ... the measurand becomes a
function of time !

both the input measurand and the output measurement

i(t) Instrument u(t) are functions of time - i(t) u(t)

We may call rapidity of an instrument “the attitude to correctly follow the changes of the measurand during time”

Rapidity of mechanical instruments is always limited by the inertia and the damping effects of its moving parts !
Rapidity for electronic instruments is always limited by the combination of its capacitive and inductive reactances !

An instrument with insufficient rapidity (insufficient dynamic response) during a measurement will output a
measurement waveform which will be attenuated and out of phase (delayed) with respect to the measurand !
The output measurement waveform will be distorted with respect to the input measurand waveform ...
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Relationship between a sinusoidal input and output:
amplitude, frequency, and time lag.

We have basically two schemes or methods to

study the dynamic response of a measurement
instrument:

1. STEP RESPONSE with which we can get

some important parameters such the
settling time and the time constant

2. FREQUENCY RESPONSE with which we can
get other important parameters such the
cut-off frequency and the damping factor ...

There is also a third scheme, which is used less

often: the ramp response that leads to the
delay time ...




Step Response

U max At time t, the input signal changes
* Bue instantaneously its value from i, to i,

i u
! U/\g ! The instrument output will try to follow this

change, form u, to u,, the best he can ...

However, it will take some time t,=t, - t,
0 0 to reach the correct final value within a
- certain error #¢g, |

0 tsr t]

te, is the dynamic error, which has to be established in advance by the operator ...

. =t,—t, is the settling time of the instrument, which provides a first idea of its dynamic response
ts e = t, —t, is the slew rate, which is the time the instrument takes to reach the first overshoot peak ...

... not all the instruments show an overshoot during the step response !



Frequency Response

In the more general case, an input variable (measurand) changes “periodically” during time, then we can refer to
simple sinusoidal inputs because every periodic signal can be decomposed by the Fourier Series:

f(x)=f(x+27) —+Z a_ cos(nx)+b_sen(nx))

input: I(t) = 1,Senat with @ = 2xf frequency
output:  U(t) =U sen(at + @) with @ phase delay
Yo 4 U 9, o o ideal frequency response
! |—° = cost (b) > p=at >t = = o and phase response curves ...

1

e constant output/input ratio for
“every frequency” of the input !

* zero phase delay for “every
frequency” of the input !




y
x Real instrument frequency response example:
0.03
( l——l ' Real instruments always attenuate the output
1 02s amplitude for higher frequencies (f > )
T ] because:
* mechanical instrument have inner moving
g > parts with inertia which can not have
f2 I f “infinite acceleration”

Banda passante * electronic instrument have inner
Bmenode components which can not have
Banda passante inductive reactance X, = jwl = oo
rmeneue 2b R capacitive reactance X, = 1/jwC=0

The extension of an instrument frequency response depends also from the dynamic error the operator accepts:
* if we accept a dynamic error €,=3% we have a cut-off frequency f,
* If we accept a dynamic error £,=25% we have a much higher cut-off frequency f,>f,

All frequencies between f,and f, (or f,) form the instrument bandwidth or pass-band !




! There are many instruments where the bandwidth does “not
L 3ab
A e start” from frequency f, = 0 Hz, but starts at a higher value f,
l- Brfa-fy — In these cases, we have “two cut-off frequencies” and the
4 — pass-band is between these two frequencies: B=f - f,

fa o

Most of the times the dynamic error (which can be “fairly large”) is expressed in a logarithmic scale, inherited
from “acustics” studies and the logarithmic unit is the decibel :

It is world wide accepted that a tolerable dynamic error limitis —3dB=20log,,0.707 which means the
instrument output A is “attenuating the input” to the 70,7 % of its real amplitude or that it is doing a
dynamic error of 29,3 % !!



We change now notation for the input and output variables:

y(t) — Inputvariable (measurand)
X(tf) — output variable (instrument response or
Indicator deflection)

y(t) —1 Instrument — x(t)

We say an instrument is dynamically linear if we can write its d X

dx
“dynamic characteristic equation” as follows : W + ba +cx = y(t)

The instrument dynamic can be described by an ordinary differential equation with constant coefficients !
The solution can be written as:

X(t) = %, (1) + X, (1

PN

Solution of the associated homogeneous equation Solution of a particular integral of the equation
which represents: x,(t) which represents: x,,(t)
the transient dynamic response of the instrument the dynamic steady state of the instrument
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dying ou Steady state
established

To study the TWO different situations we will employ the TWO different experimental schemes or tools
introduced before:

1. For the dying out transient -> the STEP RESPONSE x, (t)
2. Forthe established steady state - the FREQUENCY RESPONSE x, (1)



Zero-order instruments

When the differential equation of the dynamic characteristic has the simplest form, without the derivative terms:

The output signal (or deflection) is “always” proportional to the input signal !
a-x=Db-y - X= 2 y There is no delay between output and input therefore, zero-order instruments
“respond instantaneously” and can be considered ideal instrument !

Example: For the potentiometer we have for the left circuit E =Rl while
the displacement y is indicated by the output voltage e(t) which is:

4

emzrml:ngz%?E:ijfxsszyE

Y t
E =~ S l I Y where R = '0§ and r(t)= p% the variable “time” is only

[ R
L i y present as “independent variable” for the position y = y(t)
S S | S N | -
L 3 Note that €= v Y is also the graduation curve (static characteristic

, de E . . (e
curve) of the potentiometer and W = — s the static sensitivity !
y



First-order instruments

A first-order instrument can “store energy” in only one of its inner elements !

If we displace the indicator S of the simple mechanical system to a
position x,# 0, elastic (potential) energy is stored in the spring k.

If at t = 0 we leave the indicator S free of moving, the elastic energy
stored in the spring will pull back the indicator to the rest position
x =0 . During movement, the damper ¢ will oppose the motion.

Displacement

For every time instant t the equation of force equilibriumis: kx=-CcX or ¢cX+kx=0

: K . C .
For every time instant t the velocityis: X=——X therefore the coefficient [E} = [t] isatime
C

—=A is the time constant of the first-order instrument of above !



The solution of the 15t order differential equation cX+kx=0 isthe well known “decreasing exponential”:

Ky

X(t) =X, -€ © the curve of which can be drawn with the initial condition: t=0 — X(0)=X,

: . . N K X,
The tangent line to the curve in the point t=0 is: X(0)=——X, =——-
C c/k
spostamento
1 | C
K Observe in the figure the geometrical meaning of the time constant A =—
<

At the time t=A we have that X(1)=Xx,e ' =0.37-X, the
indicator S has travelled for 63% of the displacement and has
still a 37% to go to reach its final position x =0 !!

... but these are only introductory

” —> definitions and considerations ...
empo




In the general case of the step response for the instrument of before, an input variable is present :

a step force F, applied to the indicator Sat time t =0 ...
The 1% order differential equation that describes the indicator deflection thereforeis: cX+kx=F, andthe

general solution has the form X(t) = X, + X,

* X, isaparticular solution and describes the “steady state condition” of the instrument:
Note that when t & a the indicator speed must be zero X=0 therefore the steady state of the
indicator S will be described by the position X, = 5 /K

* X, instead, is the solution of the associated homogeneous equation and describes the “dying out transient”:

F,
e
. . . “ ” . . FO _K FO FO _Et
The final solution will be the “sum” of the two contributions: X(t) = X, + Xg = —?e c +? = ? l-ec
A e RSO
| fy e : : . c
- e _ Observe again on the figure the meaning of A = P
&
F, )X/—" £ tga=FO/k:X(O)
k
Y ) L ~> At t=A we have x(ﬂ)z%(l—e‘l):o.&%%
— 7“=E be—



When we are interests in studying the steady state dynamic response of a 15t order instrument we have to employ

the other tool, the frequency response. To do so, we have to apply at the instrument input a periodic measurand:
F(t) = F,senat a periodic force of frequency w = 2nrf !

The differential equation which describes the indicator S movements
will be:  cXx+kx=F,senawt

The general solution will always be  X(t) = X, +X,, but we will be
interested only in the steady state part, which we can assume to be:

E‘ X X (t) = X sEN(0t + )
__:_'_ How does the “amplitude” of the output indication x(t) change with
= frequency ? And what “delay” will the output x(t) show ?
 J
Imaginary A
To respond to those questions we will )
employ the phasor notation: ( ) ¢1\
A el wt+ .
o Al_e:wl
. Ao :
input:  F(t) = F,senaot = F,e’” o s
output: X(t) = X, sen(at + )= X e'”e’” wt .
Real




To verify the x,, solution we have to substitute our assumed “steady state solution” in the differential equation ...
jacX e'"el? + kX el"el? = F el

X.e¥(jac+k)=F,

|:O
- F Kk C
Xoe”" =— 0 K where i is the maximum amplitude and — = A is the time constant !
jac +K ja)C 1 k
K

... calculating the modulus of the rationalized function, we will obtain:

FO
K X, 1 . pr - ) :
X, = - —=0G= which is the amplification or gain of the instrument !
(@) +1 Fo (a2 ) +1
k

Q= arCtg(— a)/l) which is the phase delay of the instrument !



15t order instrument frequency response 15t order instrument phase delay
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These diagram have on the x axis the non-dimensional variable “wA» and therefore are normalized diagrams

1
W, = 7 is the characteristic frequency of a 1 order instrument for which we have wA=1 - G= ~(0.707

1
2w A

1
J2

therefore, w, is the cut-off frequency fora -3db attenuation: f_=



Example: The “dynamic response” of the mercury thermometer

For every differential time interval dt that precedes the equilibrium condition we have:
Heat amount the environment “transfers to” the mercury:  dQ =kA(T, —T)dt

Heat the mercury “receives from” the environment: dQ=mc-dT

Sezione
a/

L>T, Where: m is the total mercury mass
c is the mercury specific heat
o k is the thermal exchange coefficient
T _I dh A is the thermal exchange surface of the thermometer
Z
The two heat amounts of above must be the same:
dT mc dT
mc-dT =kAT, —T)dt mc -— = kAT, —KAT — —+T =T,
Al ~T) dt | kA dt
A= % is the time constant for this 15t order instrument !
If A=1s then wA=1 > @, -1=1 and 2af =1 > f, :i:0.16Hz quite slow !

27



Second-order instruments

A second-order instrument can “store energy” in two of its inner elements |

k — the elastic spring stores potential energy
m —> the moving mass stores kinetic energy

0 The differential equation that describes the “free movement” of the indicator m
displacement d 2X dX
P m e +Cc—+kx=0

If we consider the very particular case for which ¢ =0 we get the important limit situation described by :

2
X k K . .
2?+—X=O where E:wﬁ and w, is the natural frequency of the instrument !
m

A system like this has NO damping and, if pulled from its equilibrium position x =0, it will oscillate indefinitely
with a frequency w, and will NEVER stop !
Of course, it’s an IDEAL system ...



In the real case of the step response for the instrument of before, an input variable is present :

a step force F, applied to the indicator m at time t =0 ...

The 2" order differential equation that describes the indicator deflection therefore is: mX+cxXx+kx=F, and
the general solution has again the form  x(t) = X, + X,

* X, isaparticular solution and describes the “steady state condition” of the instrument:
Note that when t = @ the indicator speed and acceleration must be zero X=X=0 therefore the
steady state of the indicator S will be described by the position X, = F;/k

* X, instead, is the solution of the associated homogeneous equation and describes the “dying out transient”:

. ot C /c2 k ? L
X, (1) = Ae™ + Ae™  with al,zz—%i piei— and 4;2—%:\@ the discriminant |

Depending on the sign of the discriminant A>0, A=0, A <0 we will have “different behaviors” of the
instrument. Therefore, the 2" order instrument will exhibit “more than one type” of step response !
The curves of the step response will depend on a parameter obtained from the discriminant A :

E= £ where C_, =2+/Km
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£=0.1
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For (> 1 (which is the same of c>c_, )
the instrument is over-damped and it will
reach the final indication with a slow
exponential path !

For {=1 (whichis c=c_, ) the
instrument has a critical damping and
reaches the final indication with the
fastest exponential path !

For {<1 (whichis c<c,)the
instrument is under-damped, it reacts
quickly to the step input but exhibits
several damped over-oscillations before
reaching the final indication !

Note that for the case é <1 the frequency of the over-oscillations seems to depend from the value of the

damping factor € ...
Instrument designer generally prefer to choose a damping factor £ =0.7+0.8 so the indicator m will have only
one over-oscillation and reaches the final indication F,/k from the upper side ...



To obtain the values of w,and § one should know the values of the coefficients m, ¢, and k of the 2" order
instrument which is often almost impossible !

In case the instrument has é < 1 (which is the most common) one can employ an experimental procedure that
leads to the logarithmic decay 6 :

X

Displace the instrument indicator from the zero

m k position, leave it free to move back and measure
d _ X . . .

05 1 Xper | 0=In_¥m the decreasing oscillations ...

X 1 X

oA G B N B S S L R -, t _ m __ m
W= S =1 | o =1In =—In
IS k"

o

m+1 m+Kk

0.5 4

If the decay is small, it can also be measured “after
k waves”, as showed in the equation above.

The logarithmic decay 6 is dependent from the damping factoré: & =1In A =27 5

An+1 \/l—éjz
And the frequency w,=2n/T, of the decreasing oscillation is “smaller” than the natural frequency w,, ...
depending also from the damping factor 8§ : @, =@ 1-&°



When we are interests in studying the steady state dynamic response of a 2nd order instrument we have to
employ the other tool, the frequency response. To do so, we have to apply at the instrument input a periodic
measurand: F(t) =F,senat a periodic force of frequency w = 2nf |

The differential equation which describes the indicator m movements will be:  mX+cX +kx= F,senat
The general solution will always be Xx(t) = x,, + Xrq but we will be interested only in the steady state part,
which we can assume to be: X, (t) = X sen(at + @)

How does the “amplitude” X, of the output indication x(t) change with frequency ?
And what “phase delay” ¢ will the output x(t) show ?

Same as done for the 1%t order instruments we substitute the input F(t) = F,e’* and the instrument output
x(t) = X,e'e’ in the differential equation:

m(-w®)X,e'e!” +c(jw) X e'"e'? + kX,e'”e!” = Fe'”
|:0

F _ K

0 -
_ m . C
Mmw* + jcw +K L |

Kk Kk
k . . . E24/K . .
m K K K Vk o

X8 (-mao’® + jcw +Kk) = F, X, e =




Magnitude ratio M(w)

= =

X8 = — K — - K which is the complex frequency response for the 2" order instrument
—w2+ j2e @ 11 1—w2+ joe @ Calculating the modulus and the phase lag of this function we obtain ...
n a)n a)n a)n
F
Xo = —~ K > the amplitude of the frequency response of the instrument !
0] o[ @
a)n a)n

Normalized diagram of the amplification or gain of
. the instrument:

— 43 X
= 0 Transmission G — 0
band FO /k
— -3
- -6 2 These curves are also dependent from the damping
1= factor &
-1 -10 ) tF)ilter
ane @ e 1
For — =1 the amplificationis: G =—
o, 28

wich for «small values» of £ can be «dangerous»,
these are the resonance conditions ...




) ’
@ = arcty GZ” the phase delay of the 2R 0
1-2 instrument output ! 40|
a)n -60—
The curves depend on the damping factor €, however they all ;f =T ”
pass through the point : z T -
o - * 120F i
—=1 O =—— -140 - 07
o, 2 5
which makes it useful to experimentally determine the natural :: o o §=,O'3
frequency w, without knowing the damping factor € ... 008 SRR e . *

F
If you consider Xrq (t) = ?o the steady state output for the step response, the static sensitivity will result:

which makes the dynamic response of an instrument always inversely proportional to its static sensitivity !!




Example: the galvanometer

Static characteristic (graduation curve)

F=ilxB |F|=ilB

motor torque: C.,=nF-Db
resisting torque: Cr —k-6
c.=C.  n-iB-b=ko |o="BD;
Kk
g_4d¢ _niBb _nlBb the sensitivity is constant and
di k Jor? inversely proportional to w,

Dynamic characteristic (dynamic response)

k

The output indication is a rotation O therefore: @, =.|—

]
2
4°0 99 (ko -c@)

J
dt? dt

Torsion
Signal Spring
source
———————— o o

Lo

Permanent
magnet

“Viscous damping 8

and C(t)=C, fort>0

C(t) =C,senat

K2

(step response)

(frequency response)



